Here is the python:
-- in the ket class:
def find_topic(self,context,op):
return context.map_to_topic(self,op)
-- in the superposition class:
def find_topic(self,context,op):
result = superposition()
for x in self.data:
result += context.map_to_topic(x,op) # .drop_below(min) here too?
r = result.normalize(100).coeff_sort()
return r
-- in the new_context class:
def map_to_topic(self,e,op,t=0):
if type(op) == ket:
op = op.label[4:]
result = superposition()
for label in self.ket_rules_dict:
if op in self.ket_rules_dict[label]:
frequency_list = self.recall(op,label,True)
value = normed_frequency_class(e,frequency_list)
if value > t:
result.data.append(ket(label,value)) # "result += ket(label,value)" when swap in fast_superposition
return result.normalize(100).coeff_sort()
I guess that is it. Though I suppose how the algo works, given the above python, is somewhat opaque. Examples in the next few posts.
No comments:
Post a Comment